
Computing satellite velocity using
the broadcast ephemeris
Benjamin W. Remondi

Introduction

GPS has been used for applications where satellite
velocities are needed as well as satellite positions. Tra-
ditionally, the position was determined from noisy code
pseudoranges while the velocity came from delta carrier
phase measurements. This motivates the need to have a
velocity model to accompany the velocity data. With
velocity data, the velocity states are directly observed in a
Kalman filter. While processing can be carried out using
either post-processed or predicted ephemerides from the
international GPS service (IGS), it is convenient to use
broadcast ephemerides for real-time applications. In this
paper, a set of equations is derived which will allow one
to compute the velocity vector for a GPS satellite using
time derivatives of the Keplerian elements and correction
terms broadcast from the GPS satellites, as described in
the GPS interface control document (ICD-GPS-200). It
will be assumed that the reader is familiar with the
equations listed in this document for computing the X, Y,
Z earth-centered, earth-fixed (ECEF) coordinates of a
satellite (the reader may obtain a PDF version of the ICD-
GPS-200 from the US Coast Guard website at http://
www.navcen,uscg.gov/pubs/gps/icd200/default.htm). A
complete main program written in C is included on the
GPS Toolbox website (http://www.ngs.noaa.gov/gps-tool-
box) to illustrate how these equations can be easily
incorporated into source code to yield accurate velocity
components. As a check, the velocity calculations were
done numerically as well.

Derivation of the velocity
equations

Let us first list the symbols needed to compute the
broadcast orbits. These are listed below using the notation
found in the ICD-GPS-200.

crs;Dn;M0; cuc; e; cus; ðAÞ1=2; toe; cic; ðOMEGAÞ0;
cis; i0; crc;x;OMEGADOT; IDOT

These parameters are broadcast from the GPS satellites in
units of meters, radians, seconds, semi-circles, and semi-
circles/second. One semi-circle is the same as 180�. In what
follows, we will assume that any values sent in semi-circles
or semi-circles/second have been converted to radians or
radians/second, respectively.
There are also some needed constants given as follows.

Earth rotation rate : Xe¼ 7:2921151467�10�5 rad=s

WGS 84 value for the product of earth’s gravity and its mass:

l¼ 3:986005�1014 m3=s2

Next let us rewrite the broadcast computation algorithm,
to compute ECEF position at user time t, from the ICD-
GPS-200, adding comments and new steps for clarity and
for derivatives. Please refer to the ICD-GPS-200 in what
follows. In the discussion below, the new equations and
comments added for computing velocity will be preceded
by two slashes (i.e., those lines either not found in the ICD-
GPS-200 document or not needed for computing position
begin with the characters ‘//’).

A¼ ðA1=2Þ2
n0 ¼

ffiffiffiffiffiffiffiffiffiffiffi

l=A3
p

tk ¼ t� toe t is the time of the desired orbit position
n¼ n0þDn
Mk ¼M0þntk

== _Mk ¼ n Consider all lines beginning with ==
to be a comments.
==Mk ¼ Ek� e sin Ek

Ek ¼Mk == Initialize eccentric anomaly to mean anomaly
for ði¼ 0; i\7; iþþÞ Ek ¼Mkþ e sin Ek ==
Improve Ek; more loops than needed
== _Mk ¼ _Ek� e cos Ek

_Ek ¼ 1� e cos Ekð Þ _Ek

== _Ek ¼ _Mk= 1� e cos Ekð Þwill be needed later

Received: 19 March 2004 / Accepted: 26 March 2004
Published online: 4 August 2004
ª Springer-Verlag 2004

B. W. Remondi (&)
The XYZs, of GPS, Inc., P.O. Box 37, Dickerson,
MD 20842, USA
E-mail: remondi@xyzsofgps.com
Tel.: +1-301-9727402
Fax: +1-301-3492547

DOI 10.1007/s10291-004-0094-6 GPS Solutions (2004) 8:181–183 181

GPS Tool Box

182 GPS Solutions (2004) 8:181–183

==True anomaly is tk

==tk ¼ tan�1 sin tk

cos tk

� �

¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2
p

sin Ek 1� e cos Ekð Þ
cos Ek � eð Þ= 1� e cos Ekð Þ

()

== ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2
p

sin Ek

cos Ek � eð Þ

()

==In practice the above equation is optional ðsee belowÞ; but we will

==use it because the ATAN2 function takes care of the ambiguity nicely.

==Because we know Ek the following ðambiguousÞ equation could

==have been used for tk as well: Ek ¼ cos�1 eþ cos tk

1þ e cos tk

� �

==This equation instead will be used to compute _tk:

== cos Ek 1þ e cos tkð Þ ¼ eþ cos tk

==Differentiating both sides we get

==� sin Ek
_Ek 1þ e cos tkð Þ � cos Eke sin tk _tk ¼ � sin tk _tk

==� sin Ek
_Ek 1þ e cos tkð Þ ¼ �1þ cos Ekeð Þ sin tk _tk

== _tk ¼ sin Ek
_Ek 1þ e cos tkð Þ= 1� cos Ekeð Þ sin tk½ �

Uk ¼ tk þ x

== _Uk ¼ _tk ==x is assumed to be constant

duk ¼ cus sin 2Ukð Þ þ cuc cos 2Ukð Þ
drk ¼ crs sin 2Ukð Þ þ crc cos 2Ukð Þ
dik ¼ cis sin 2Ukð Þ þ cic cos 2Ukð Þ
== _duk ¼ 2 cus cosð2UkÞ � cuc sinð2UkÞ½ � _Uk

== _drk ¼ 2 crs cos 2Ukð Þ � crc sin 2Ukð Þ½ � _Uk

== _dik ¼ 2 cis cos 2Ukð Þ � cic sin 2Ukð Þ½ � _Uk

uk ¼ Uk þ duk ==Same as uk ¼ tk þ xþ duk

rk ¼ Að1� e cos EkÞ þ drk

ik ¼ i0 þ ðIDOTÞtk þ dik

== _uk ¼ _Uk þ _duk ==Same as _uk ¼ _tk þ _duk

==_rk ¼ Ae sin Ek
_Ek þ _drk

_ik ¼ IDOT þ _dik

x0k ¼ rk cos uk

y0k ¼ rk sin uk

== _x0k ¼ _rk cos uk � rk sin uk _uk

== _x0k ¼ _rk cos uk � y0k _uk

== _y0k ¼ _rk sin uk þ rk cos uk _uk

== _y0k ¼ _rk sin uk þ x0k _uk

Xk ¼ X0 þ _X� _Xe

� �

tk � _Xetoe

== _Xk ¼ _X� _Xe

� �

xk ¼ x0k cos Xk � y0k cos ik sin Xk

yk ¼ x0k sin Xk þ y0k cos ik cos Xk

zk ¼ y0k sin ik

GPS Tool Box

Example source code

The GPS Toolbox website (http://www.ngs.noaa.gov/
gps-toolbox) lists the source code for an example C pro-
gram, which illustrates how to compute both position and
velocity for PRN 20 starting with broadcast ephemeris data
similar to what might be found in a typical RINEX navi-
gation message file. The reader can use this C code to
create a similar subroutine or function, which will
compute the position and velocity of a satellite given the
broadcast ephemeris data, the PRN name, and a requested
GPS time (transmission time) in units of GPS week and
seconds-of-week. The author has intentionally presented
this in a ‘‘main’’ program so as not to obscure the tutorial.
In practice, a pointer to a broadcast structure would be
passed to a similar C function. It should be pointed out
that the ambiguity with respect to the GPS week has been
ignored in this simple tutorial program.

Additional remarks

The above mentioned C program was rerun at both
t+0.005 s and at t)0.005 s to determine the position of the
satellite so as to determine the velocity numerically using
delta position divided by delta time (i.e., over 0.01 s). This
relatively large delta time was used in recognition of the

finite precision of the computer. This is why a ‘‘long
double’’ (80 bit) was adopted in the source code. In
practice, a long double is not required and a ‘‘double’’ (64
bit) will suffice. If a small delta t (e.g., 1 ls) were used, this
simple numerical approach would have been very poor. If
a larger delta t were used (e.g., 10 s), the simple derivative
definition would not suffice and a polynomial fit over a
number of points would be needed.
The numerical and analytical results agree sufficiently to
ensure that the analytical (symbolic) derivatives were done
correctly—and that is the point. Separately, the velocity
was compared with the precise orbits and the agreement
was better than 1 mm/s, however this is not the point of
this article.

Summary and conclusions

In summary, this paper has presented an expansion of
the ICD-GPS-200 algorithm to include computation of the
velocity components of the satellite in the ECEF frame. It
has been verified that the numerical and analytical com-
putations agree within about 1 l/s. This is just what one
would expect from a ‘‘long double’’ comparison. In a
future ICD algorithm, possibly the algorithm could be
expanded to include velocity. With proper care, the
velocity components can be computed numerically as well.

GPS Solutions (2004) 8:181–183 183

== _xk ¼ _x0k cos Xk � x0k sin Xk
_Xk � _y0k cos ik sin Xk � y0k � sin ik

_ik sin Xk þ cos ik cos Xk
_Xk

� �

== _xk ¼ _x0k cos Xk � _y0k cos ik sin Xk þ y0k sin ik sin Xk
_ik � x0k sin Xk þ y0k cos ik cos Xk

� �

_Xk

== _xk ¼ _x0k cos Xk � _y0k cos ik sin Xk þ y0k sin ik sin Xk
_ik � yk

_Xk

== _yk ¼ _x0k sin Xk þ x0k cos Xk
_Xk þ _y0k cos ik cos Xk þ y0k � sin ik

_ik cos Xk � cos ik sin Xk
_Xk

� �

== _yk ¼ _x0==k sin Xk þ _y0k cos ik cos Xk � y0k sin ik
_ik cos Xk þ x0k cos Xk � y0k cos ik sin Xk

� �

_Xk

== _yk ¼ _x0k sin Xk þ _y0k cos ik cos Xk � y0k sin ik
_ik cos Xk þ xk

_Xk

== _zk ¼ _y0k sin ik þ y0k cos ik
_ik

GPS Tool Box

